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Abstract

In recent years, neural network based methods for multi-
speaker text-to-speech synthesis (TTS) have made significant
progress. However, the current speaker encoder models used
in these methods still cannot capture enough speaker informa-
tion. In this paper, we focus on accurate speaker encoder mod-
eling and propose an end-to-end method that can generate high-
quality speech and better similarity for both seen and unseen
speakers. The proposed architecture consists of three separately
trained components: a speaker encoder based on the state-of-
the-art ECAPA-TDNN model which is derived from speaker
verification task, a FastSpeech2 based synthesizer, and a HiFi-
GAN vocoder. The comparison among different speaker en-
coder models shows our proposed method can achieve better
naturalness and similarity. To efficiently evaluate our synthe-
sized speech, we are the first to adopt deep learning based auto-
matic MOS evaluation methods to assess our results, and these
methods show great potential in automatic speech quality as-
sessment.

Index Terms: multi-speaker text-to-speech, speaker represen-
tation, few-shot, MOS prediction

1. Introduction

Text-to-speech (TTS) aims to produce natural human speech. In
the past few years, deep learning based models have developed
rapidly. Recent research shows that the quality and the natural-
ness of the synthesized voices are comparable with real human
speech, such as Tacotron 2 [1]], DeepVoice 3 [2l], and FastSpeech
2 [3]. Despite the successful achievement of speaker-dependent
TTS, how to create expressive and controllable in terms of var-
ious speaking styles in multi-speaker task still needs more re-
search. On the other hand, the models of the few-shot voice
cloning in unseen speakers circumstance by using a speaker en-
coder usually tend to synthesize neutral and poor quality voices
compared to the real speaker. Therefore, how to sufficiently
extract speaker information from the reference voices becomes
significant.

To accomplish the multi-speaker task, a TTS system and
a speaker representation are needed. In previous studies,
most multi-speaker systems use a speaker encoder to extract
speaker embedding to characterize the target speaker’s voice
and style. Because models in speaker verification task are de-
signed to extract the text-independent speaker embeddings from
the target speaker voices to capture speaker characteristics, they
have been widely adopted as the speaker encoder, such as d-
vector [4]], x-vector [S]]. Besides, pretrained models are more of-
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ten used instead of jointly training with the TTS system, for the
speaker knowledge for speaker encoder is limited by training
dataset in the latter case. Jia et al. [6] investigated the knowl-
edge transfer where the speaker verification model is trained
on a dataset with many speakers, like VoxCeleb [7, 18] dataset.
Thus, the speaker embedding extracted from the speaker verifi-
cation model conditioning the TTS system leads to better gen-
eralization and performance on the multi-speaker TTS and the
voice cloning task. Especially the combination of x-vector [5]
and TTS system achieves promising results [9].

However, the naturalness and speaker similarity of the au-
dios synthesized from the current models are less favorable, es-
pecially in unseen datasets. The reason is that the ability of the
current speaker encoders is not enough to capture enough infor-
mation of the target speakers in the multi-speaker TTS task. To
address these weaknesses, we propose our multi-speaker TTS
by adopting the non-autoregressive TTS model FastSpeech 2
and the TDNN-based model ECAPA-TDNN [10] from speaker
verification task, which has stronger speaker features extraction
ability and robustness [11]. It introduces multiple enhance-
ments to the basic architecture and outperforms other TDNN
based speaker verification models on the VoxCeleb datasets. We
compare different speaker encoders and investigate their gener-
alization ability in two publicly available datasets for both the
seen and unseen tests. Our method outstands other methods in
both naturalness and speaker similarity.

To better evaluate our methods, we need many subjective
evaluations including the mean opinion score (MOS) test and
speaker similarity test. However, such measurement requires
many humans to be involved, making it time-consuming and ex-
pensive. Thanks to the VCC 2016 and VCC 2018 datasets [[12,
13]], several deep-learning-based automatic speech quality eval-
uation methods have been proposed, such as MOSNet [14],
MBNet [15], a self-supervised representation based MOS pre-
dictor model (denoted as S3PRL)[16]. To our best knowledge,
we are the first to evaluate the synthesized speech by using the
MOS prediction model to accelerate our research. We utilize
these methods and compare the MOS score results. The results
obtained from automatic MOS prediction models are consistent
with subjective MOS results, which shows that they have great
potential to free us from the burden of MOS tests.

The paper is organized as follows: Section [2] describes re-
lated works in terms of speaker representations, and Section 3]
illustrates our proposed method with training workflow. Ex-
perimental setup and results are shown in Section [ At last,
we conclude our finding in Section@ Examples of synthesized
speech can be found on the project pag

! Audio samples: https://happylittlecat2333.github.io/interspeech2022
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Figure 1: The illustration of our proposed ECAPA-TDNN based multi-speaker speech synthesis model. (a) depicts the training and
inference workflows in our experiments. (b) shows the whole network of ECAPA-TDNN. K stands for kernel size and d for dilation. C
and T denote channels and temporal dimensions. (c) is the detailed illustration of SE-Res2Block in the ECAPA-TDNN model.

2. Speaker Representations

Multi-speaker TTS system highly depends on speaker represen-
tation for conditioning the acoustic model to clone the voices
from target speakers. Many models derived from the speaker
verification task have been applied in TTS system because
they can extract speaker information from speech. These mod-
els are usually trained on a large number of text-independent
datasets [7, 18] recorded by many speakers, which provides them
the ability to capture the subtle characteristics and styles from
different speakers by using only a short utterance under any cir-
cumstances.

In speaker verification task, deep neural network models
have surpassed the classic model i-vector [17]. Among them,
d-vector [4], x-vector [3] are representative methods, and they
have been used in multi-speaker TTS [6, 9]. These combina-
tions show great potential and some methods have been widely
used [5]. Below, we describe each of these speaker encoder
models.

2.1. D-vector

The conventional d-vector [4] model uses a DNN architecture
as a speaker feature extractor operating at the frame level. After
sending the frames through the DNN network, d-vector is ob-
tained by element-wise averaging the frame-level outputs from
the last hidden layer of DNN network.

2.2. X-vector

In the original x-vector paper [3], a time-delay neural network
(TDNN) with sub-sampling is used as the encoder network.
An attentive statistics pooling (ASP) [18]] layer aggregates all
frame-level outputs from the last encoder layer and computes its
mean and standard deviation. After sending through segment-
level layer (fully-connected layer), the x-vector speaker embed-
ding is obtained. The combination of a TDNN network with
dilation has three advantages: reduction of the total number of
independent connection parameters, invariance under shifts in
times, and larger contextual vision. The use of ASP allows the
model to select frames that are indeed relevant to speaker char-

acteristics.

3. Proposed Method

Inspired by the outstanding performance of ECAPA-TDNN in
speaker verification task, we introduce a speaker encoder based
on this model to our multi-speaker TTS system. Fig. [I] shows
our modified speaker encoder based on ECAPA-TDNN and our
proposed method with training and inference workflows.

3.1. Speaker encoder

Based on recent trends in the related field of computer vision
and face verification, ECAPA-TDNN also uses TDNN as its
base architecture but introduces multiple enhancements: using
Squeeze-and-Excitation (SE) blocks [19] in encoder modules
to explicitly model channel interdependencies; implementing
Res2Net with skip connections; aggregating and propagating
features of different hierarchical levels in the encoder to cap-
ture both the shallow and deep speaker feature maps; improving
statistics pooling module with channel- and context-dependent
frame attention to focus more on speaker-specific characteris-
tics such as focusing more vowels than consonants. Those im-
provements endow ECAPA-TDNN with the ability to extract
subtle speaker information and outperform other TDNN based
models.

3.2. Acoustic model

We extend the non-autoregressive model FastSpeech 2 [3] ar-
chitecture to implement our multi-speaker model. FastSpeech 2
is composed of Transformer-based encoder and decoder with a
variant adaptor. The encoder generates the hidden embedding
from a sequence of phoneme-level inputs. The variant adaptor
aims to add variant information to phoneme hidden sequences
and it is composed of a duration predictor, a pitch predictor,
and an energy predictor. Finally, the decoder generates the mel
spectrogram from the hidden sequences expanded by the vari-
ant adaptor. Following the module in Tacotron [20], we add a
Postnet (Conv1D blocks) module after the decoder to finetune
the speech quality.



3.3. TTS training and inference

At the training stage, we use the speaker encoder model pre-
trained on speaker verification task to extract fixed-dimensional
embeddings from each utterance for speaker representations.
After that, the utterance-level speaker representations are pro-
jected to match the dimension of the output from the encoder of
acoustic model with one linear layer, and they are expanded and
added to the output. Therefore, speaker information is trans-
ferred to the synthesizer and the variant adaptor in FastSpeech
2 can be conditioned on speaker information. At the inference
stage, we extract a speaker representation for each utterance and
compute an average representation on behalf of this speaker.
The other process is the same as the training stage.

4. Experiments
4.1. Experimental Setup

We use two publicly available English datasets: VCTK [21]] and
LibriTTS [22]. VCTK corpus includes speech data uttered by
109 English speakers with various accents at 48 kHz. Each
speaker reads out about 400 sentences and about 44 hours of
data in sum. LibriTTS consists of 585 hours of speech data at
the 24 kHz sampling rate from 2, 456 speakers and the corre-
sponding texts. In our experiments, all utterances are down-
sampled to 22050 Hz and are used to extract 80 dimensional
mel spectrograms.

We implement pretrained x—vectoﬂ ECAPA—TDNI\ﬂ as
speaker encoder. The x-vector and ECAPA-TDNN are both pre-
trained on Voxceleb 1 and Voxceleb 2 [[7,18]], and the EER results
on Voxl-test are 2.82% and 0.69%. For preprocessing, each
utterance is resampled to 16 kHz but converted to 30 dimen-
sional MFCC features for x-vector and 80 for ECAPA-TDNN.
After extraction, the dimensions of the speaker embeddings for
x-vector and ECAPA-TDNN are 512 and 128 respectively.

For the acoustic model, we follow the open-source Fast-
Speech2 implementatiorﬂ ‘We use Montreal Force Aligner [23]
to get the ground-truth duration for each phoneme as additional
inputs. We use the pretrained HiFi-GAN’|model as our vocoder
to convert the 80 dimensional mel spectrograms to 22050 Hz
audio files. Our multi-speaker models are all trained for 400k
steps with a batch size of 16 on one GeForce RTX 3090.

We use the following methods for evaluation:

1. ground-truth: the real utterances from the datasets.

2. reconstruct: directly convert the ground-truth mel spec-
trograms back to speech.

3. baseline: FastSpeech 2 with look-up table.

4. x-vector: FastSpeech 2 with pretrained x-vector speaker
encoder.

5. ecapa: our proposed method by combining FastSpeech 2
with pretrained ECAPA-TDNN speaker encoder.

To comprehensively evaluate our proposed model, we split
the VCTK dataset for training and testing: 8 speakers are held
as unseen speakers cloning test, and other 101 speakers are used
to train and evaluate models for seen speakers. We use LibriTTS
for the unseen speaker cloning test.

During testing, we use the average speaker embeddings ex-
tracted from all the utterances of the same speaker instead of

Zhttps://github.com/manojpamk/pytorch_xvectors
3https://huggingface.co/speechbrain/spkrec-ecapa-voxceleb
“https://github.com/ming024/FastSpeech2
Shttps://github.com/jik876/hifi-gan

from only one utterance, because using the averaged embedding
can be more stable and have better similarity in our experiment.
It should also be noted that the pretrained models will not be
finetuned and be adapted in useen speakers in our experiments
to evaluate the voice cloing ability of our proposed method.

4.2. Objective similarity evaluation

We use a third-party pretrained speaker encoder to evaluate the
speaker similarity between the real speech and the synthesized
speech. To evaluate how similar synthesized speech and real
speech are, we make pairs for each synthesized utterance with a
randomly selected real utterance from the same speaker. Then
we use the pretrained speaker encoder to extract speaker embed-
dings for each utterance and compute the average cosine simi-
larity for each pair as our similarity result.

The results of the objective speaker similarity test are
shown in Table [T} It can be seen that using the pretrained
ECAPA-TDNN model as speaker encoder outperforms x-vector
in both seen speaker test and unseen speaker test in VCTK, even
in unseen speaker test set from LibriTTS. Moreover, the pro-
posed model matches the baseline (usually having best results in
seen speaker) in seen speaker test on VCTK. For unseen speaker
test on VCTK and LibriTTS, using a simple lookup table cannot
clone unseen speaker voices, and our proposed method has bet-
ter similarity than the x-vector model, which suggests ECAPA-
TDNN model can capture more speaker information and have
potential to utilize in multi-speaker task than other speaker en-
coder models.

4.3. Subjective evaluation

We conduct a mean opinion score (MOS) test to evaluate the
naturalness and speaker similarity of the synthesized speech. In
our test, we randomly select 20 utterances from each test set. In
the quality MOS test, the listeners are given one synthesized ut-
terance and are asked to give a rating score between 1 to 5 points
for speech quality. In the speaker similarity test, the listeners are
given both a real utterance and a synthesized utterance to eval-
uate the similarity by scoring between 1 to 5 points. Table
shows the MOS results and the speaker similarity results.

In naturalness test, it can be seen that our proposed method
outperforms the x-vector model in all test sets including unseen
speaker tests. In similarity test, it shows that the speech synthe-
sized by our model also has better similarity than other methods.
The results are consistent with the objective similarity evalua-
tion. These results suggest that combining the ECAPA-TDNN
model and acoustic models has the power to gain better speech
naturalness and speaker similarity in the multi-speaker task.

4.4. Automatic MOS evaluation

To further evaluate the effectiveness of our proposed method,
we use several automatic speech quality assessment models to
assess our synthesized speech. We use three pretrained MOS
prediction models in our experiment: MOSNet, MBNet, and
Self-supervised Representation method (S3PRL). These models
are pretrained on VCC 2016 [12] and VCC 2018 [13] datasets,
which include lots of MOS rating scores evaluated by many par-
ticipants. It should be noticed that the speech quality in the
voice conversion task is less natural than speech synthesis task,
and the rating scores in the VCC datasets are lower than the
usual TTS score. We use the same MOS test set in subjective
evaluation and the results of the objective MOS prediction test
are shown in Table[3]



Table 1: Objective speaker similarity for different test sets and
different types of speaker encoders.

Seen Unseen Unseen

method  yopg  VOTK  LibeTTS
ground-truth 979 975 .986
reconstruct 976 972 .984
baseline 968 - -
X-vector 963 954 956
ecapa 967 959 959

Table 2: The results of the subjective MOS tests for naturalness
and speaker similarity.

Seen Unseen Unseen

Model — method  yopg  yeTK  LibriTTS
ground-truth 4.19 4.20 4.21
reconstruct 4.09 4.11 4.10
MOS baseline 3.70 - -
X-vector 3.51 3.51 3.38
ecapa 3.62 3.62 3.47
reconstruct 4.65 4.69 4.66
baseline 3.89 - -
Similarity X-vector 3.71 3.65 3.08
ecapa 3.93 3.66 3.18

It can be seen from the results that the proposed method out-
performs the x-vector model and achieves comparable speech
quality to the baseline in seen VCTK test, which is consistent
with the results in subjective MOS evaluation. Besides, our
proposed model also outperforms the x-vector model in unseen
VCTK or unseen LibriTTS test.

4.5. Analysis

In order to investigate why our proposed method has better
performance in the multi-speaker TTS task, we visualize the
speaker embeddings in Fig[J] We randomly select the speaker
embeddings extracted from 200 utterances from 10 speakers
and use t-SNE to reduce them into 2-dimension. It can be seen
from the plot that both the ECAPA-TDNN model and the x-
vector model can discern the utterance from the same speaker,
while the distribution of ECAPA-TDNN is more continuous
which suggests that it clusters each speaker but keeping the sub-
tle speaker characteristics from different utterances spoken by
the same speaker. This is helpful in multi-speaker synthesis,
as its goal is different from speaker verification task. Previous
studies [24] suggest that the continuous distribution of speaker
embeddings has better performance in the multi-speaker TTS
task. Our experiment results in similarity tests confirm these
studies [24]. As a result, using ECAPA-TDNN as a speaker
encoder can achieve better speech naturalness and speaker sim-
ilarity.

By analyzing the results obtained from humans and MOS
predictors, we find that assessments from automatic MOS pre-
dictors are consistent with evaluations from subjective method,
which can both reflect the quality of the synthesized speech in
the seen and unseen VCTK test set. The use of these mod-
els can free us from the burden of collecting subjective evalua-
tions. Meanwhile, we also see that the currently MOS predic-
tion models lose their effectiveness in some circumstances like

Table 3: Automatic MOS evaluation results for seen and unseen
test sets by using three MOS prediction models.

Seen Unseen Unseen

Model — method  yeqpg  yOTK  LibriTTS

ground-truth 4.16 391 3.40
reconstruct 3.75 3.83 3.34

MOSNet baseline 3.32 - -
X-vector 3.11 3.44 3.15
ecapa 3.16 3.52 342
ground-truth 3.86 3.99 3.05
reconstruct 3.45 3.81 2.99

MBNet baseline 3.37 - -
X-vector 3.07 3.46 3.21
ecapa 3.35 3.55 3.53
ground-truth 3.53 3.53 3.45
reconstruct 3.44 3.47 3.37

S3PRL baseline 3.45 - -
X-vector 3.27 3.42 3.36
ecapa 3.44 3.52 348
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Figure 2: Visualizations of different speaker embeddings.
Left: x-vector Right: ECAPA-TDNN

unseen LibriTTS, and a more comprehensive MOS dataset may
increase their robustness and accuracy.

5. Conclusions

In order to improve the naturalness and speaker similarity in
multi-speaker text-to-speech synthesis, we propose our end-to-
end method by introducing a more powerful speaker encoder
based on the ECAPA-TDNN model derived from speaker verifi-
cation task. We combine the independently pretrained ECAPA-
TDNN model with a non-autoregressive acoustic model Fast-
Speech2. By transferring the knowledge learned from other
datasets and applying the SOTA speaker verification model, our
proposed model outperforms other methods in both speech nat-
uralness and speaker similarity. Besides, to lighten the burden
of subjective evaluation, we are the first to adopt automatic
MOS predictors to assess our testing results and these mod-
els show great potential. For future work, we will continue to
investigate the performance of few-shot multi-speaker speech
synthesis.
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